Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
N Engl J Med ; 383(19): 1813-1826, 2020 11 05.
Article in English | MEDLINE | ID: covidwho-2292084

ABSTRACT

BACKGROUND: Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), no antiviral agents have yet been shown to be efficacious. METHODS: We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. RESULTS: A total of 1062 patients underwent randomization (with 541 assigned to remdesivir and 521 to placebo). Those who received remdesivir had a median recovery time of 10 days (95% confidence interval [CI], 9 to 11), as compared with 15 days (95% CI, 13 to 18) among those who received placebo (rate ratio for recovery, 1.29; 95% CI, 1.12 to 1.49; P<0.001, by a log-rank test). In an analysis that used a proportional-odds model with an eight-category ordinal scale, the patients who received remdesivir were found to be more likely than those who received placebo to have clinical improvement at day 15 (odds ratio, 1.5; 95% CI, 1.2 to 1.9, after adjustment for actual disease severity). The Kaplan-Meier estimates of mortality were 6.7% with remdesivir and 11.9% with placebo by day 15 and 11.4% with remdesivir and 15.2% with placebo by day 29 (hazard ratio, 0.73; 95% CI, 0.52 to 1.03). Serious adverse events were reported in 131 of the 532 patients who received remdesivir (24.6%) and in 163 of the 516 patients who received placebo (31.6%). CONCLUSIONS: Our data show that remdesivir was superior to placebo in shortening the time to recovery in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Administration, Intravenous , Adult , Aged , Alanine/administration & dosage , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Double-Blind Method , Extracorporeal Membrane Oxygenation , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Respiration, Artificial , SARS-CoV-2 , Time Factors , Young Adult , COVID-19 Drug Treatment
2.
Ann Intern Med ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2145013

ABSTRACT

BACKGROUND: The COVID-19 standard of care (SOC) evolved rapidly during 2020 and 2021, but its cumulative effect over time is unclear. OBJECTIVE: To evaluate whether recovery and mortality improved as SOC evolved, using data from ACTT (Adaptive COVID-19 Treatment Trial). DESIGN: ACTT is a series of phase 3, randomized, double-blind, placebo-controlled trials that evaluated COVID-19 therapeutics from February 2020 through May 2021. ACTT-1 compared remdesivir plus SOC to placebo plus SOC, and in ACTT-2 and ACTT-3, remdesivir plus SOC was the control group. This post hoc analysis compared recovery and mortality between these comparable sequential cohorts of patients who received remdesivir plus SOC, adjusting for baseline characteristics with propensity score weighting. The analysis was repeated for participants in ACTT-3 and ACTT-4 who received remdesivir plus dexamethasone plus SOC. Trends in SOC that could explain outcome improvements were analyzed. (ClinicalTrials.gov: NCT04280705 [ACTT-1], NCT04401579 [ACTT-2], NCT04492475 [ACTT-3], and NCT04640168 [ACTT-4]). SETTING: 94 hospitals in 10 countries (86% U.S. participants). PARTICIPANTS: Adults hospitalized with COVID-19. INTERVENTION: SOC. MEASUREMENTS: 28-day mortality and recovery. RESULTS: Although outcomes were better in ACTT-2 than in ACTT-1, adjusted hazard ratios (HRs) were close to 1 (HR for recovery, 1.04 [95% CI, 0.92 to 1.17]; HR for mortality, 0.90 [CI, 0.56 to 1.40]). Comparable patients were less likely to be intubated in ACTT-2 than in ACTT-1 (odds ratio, 0.75 [CI, 0.53 to 0.97]), and hydroxychloroquine use decreased. Outcomes improved from ACTT-2 to ACTT-3 (HR for recovery, 1.43 [CI, 1.24 to 1.64]; HR for mortality, 0.45 [CI, 0.21 to 0.97]). Potential explanatory factors (SOC trends, case surges, and variant trends) were similar between ACTT-2 and ACTT-3, except for increased dexamethasone use (11% to 77%). Outcomes were similar in ACTT-3 and ACTT-4. Antibiotic use decreased gradually across all stages. LIMITATION: Unmeasured confounding. CONCLUSION: Changes in patient composition explained improved outcomes from ACTT-1 to ACTT-2 but not from ACTT-2 to ACTT-3, suggesting improved SOC. These results support excluding nonconcurrent controls from analysis of platform trials in rapidly changing therapeutic areas. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.

3.
Health Secur ; 20(S1): S39-S48, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2097254

ABSTRACT

Infectious disease outbreaks and pandemics have repeatedly threatened public health and have severely strained healthcare delivery systems throughout the past century. Pathogens causing respiratory illness, such as influenza viruses and coronaviruses, as well as the highly communicable viral hemorrhagic fevers, pose a large threat to the healthcare delivery system in the United States and worldwide. Through the Hospital Preparedness Program, within the US Department of Health and Human Services Office of the Assistant Secretary for Preparedness and Response, a nationwide Regional Ebola Treatment Network (RETN) was developed, building upon a state- and jurisdiction-based tiered hospital approach. This network, spearheaded by the National Emerging Special Pathogens Training and Education Center, developed a conceptual framework and plan for the evolution of the RETN into the National Special Pathogen System of Care (NSPS). Building the NSPS strategy involved reviewing the literature and the initial framework used in forming the RETN and conducting an extensive stakeholder engagement process to identify gaps and develop solutions. From this, the NSPS strategy and implementation plan were formed. The resulting NSPS strategy is an ambitious but critical effort that will have impacts on the mitigation efforts of special pathogen threats for years to come.


Subject(s)
Coronavirus Infections , Hemorrhagic Fever, Ebola , Coronavirus Infections/epidemiology , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Pandemics , Public Health , United States
4.
Health Secur ; 20(S1): S20-S30, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2097246

ABSTRACT

The need for well-controlled clinical trials is fundamental to advancing medicine. Care should be taken to maintain high standards in trial design and conduct even during emergency medical events such as an infectious disease outbreak. In 2020, SARS-CoV-2 emerged and rapidly impacted populations around the globe. The need for effective therapeutics was immediately evident, prompting the National Institutes of Health to initiate the Adaptive COVID-19 Treatment Trial. The Special Pathogens Research Network, made up of 10 Regional Emerging Special Pathogens Treatment Centers, was approached to participate in this trial and readily joined the trial on short notice. By trial closure, the Special Pathogens Research Network sites, making up 19% of all study sites, enrolled 26% of the total participants. The initial resources available and experience in running clinical trials at each treatment center varied from minimal experience and few staff to extensive experience and a large staff. Based on experiences during the first phase of this trial, the Special Pathogens Research Network members provided feedback regarding operational lessons learned and recommendations for conducting future studies during a pandemic. Communication, collaboration, information technology, regulatory processes, and access to resources were identified as important topics to address. Key stakeholders including institutions, institutional review boards, and study personnel must maintain routine communication to efficiently and effectively activate when future research needs arise. Regular and standardized training for new personnel will aid in transitions and project continuity, especially in a rapidly evolving environment. Trainings should include local just-in-time training for new staff and sponsor-designed modules to refresh current staff knowledge. We offer recommendations that can be used by institutions and sponsors to determine goals and needs when preparing to set up this type of trial for critical, short-notice needs.


Subject(s)
COVID-19 Drug Treatment , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , SARS-CoV-2 , United States
5.
Open Forum Infect Dis ; 9(7): ofac219, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1931882

ABSTRACT

Background: The Adaptive COVID Treatment Trial-2 (ACTT-2) found that baricitinib in combination with remdesivir therapy (BCT) sped recovery in hospitalized coronavirus disease 2019 (COVID-19) patients vs remdesivir monotherapy (RMT). We examined how BCT affected progression throughout hospitalization and utilization of intensive respiratory therapies. Methods: We characterized the clinical trajectories of 891 ACTT-2 participants requiring supplemental oxygen or higher levels of respiratory support at enrollment. We estimated the effect of BCT on cumulative incidence of clinical improvement and deterioration using competing risks models. We developed multistate models to estimate the effect of BCT on clinical improvement and deterioration and on utilization of respiratory therapies. Results: BCT resulted in more linear improvement and lower incidence of clinical deterioration compared with RMT (hazard ratio [HR], 0.74; 95% CI, 0.58 to 0.95). The benefit was pronounced among participants enrolled on high-flow oxygen or noninvasive positive-pressure ventilation. In this group, BCT sped clinical improvement (HR, 1.21; 95% CI, 0.99 to 1.51) while slowing clinical deterioration (HR, 0.71; 95% CI, 0.48 to 1.02), which reduced the expected days in ordinal score (OS) 6 per 100 patients by 74 days (95% CI, -8 to 154 days) and the expected days in OS 7 per 100 patients by 161 days (95% CI, 46 to 291 days) compared with RMT. BCT did not benefit participants who were mechanically ventilated at enrollment. Conclusions: Compared with RMT, BCT reduces the clinical burden and utilization of intensive respiratory therapies for patients requiring low-flow oxygen or noninvasive positive-pressure ventilation compared with RMT and may thereby improve care for this patient population.

6.
Lancet Respir Med ; 10(9): 888-899, 2022 09.
Article in English | MEDLINE | ID: covidwho-1864689

ABSTRACT

BACKGROUND: Baricitinib and dexamethasone have randomised trials supporting their use for the treatment of patients with COVID-19. We assessed the combination of baricitinib plus remdesivir versus dexamethasone plus remdesivir in preventing progression to mechanical ventilation or death in hospitalised patients with COVID-19. METHODS: In this randomised, double-blind, double placebo-controlled trial, patients were enrolled at 67 trial sites in the USA (60 sites), South Korea (two sites), Mexico (two sites), Singapore (two sites), and Japan (one site). Hospitalised adults (≥18 years) with COVID-19 who required supplemental oxygen administered by low-flow (≤15 L/min), high-flow (>15 L/min), or non-invasive mechanical ventilation modalities who met the study eligibility criteria (male or non-pregnant female adults ≥18 years old with laboratory-confirmed SARS-CoV-2 infection) were enrolled in the study. Patients were randomly assigned (1:1) to receive either baricitinib, remdesivir, and placebo, or dexamethasone, remdesivir, and placebo using a permuted block design. Randomisation was stratified by study site and baseline ordinal score at enrolment. All patients received remdesivir (≤10 days) and either baricitinib (or matching oral placebo) for a maximum of 14 days or dexamethasone (or matching intravenous placebo) for a maximum of 10 days. The primary outcome was the difference in mechanical ventilation-free survival by day 29 between the two treatment groups in the modified intention-to-treat population. Safety analyses were done in the as-treated population, comprising all participants who received one dose of the study drug. The trial is registered with ClinicalTrials.gov, NCT04640168. FINDINGS: Between Dec 1, 2020, and April 13, 2021, 1047 patients were assessed for eligibility. 1010 patients were enrolled and randomly assigned, 516 (51%) to baricitinib plus remdesivir plus placebo and 494 (49%) to dexamethasone plus remdesivir plus placebo. The mean age of the patients was 58·3 years (SD 14·0) and 590 (58%) of 1010 patients were male. 588 (58%) of 1010 patients were White, 188 (19%) were Black, 70 (7%) were Asian, and 18 (2%) were American Indian or Alaska Native. 347 (34%) of 1010 patients were Hispanic or Latino. Mechanical ventilation-free survival by day 29 was similar between the study groups (Kaplan-Meier estimates of 87·0% [95% CI 83·7 to 89·6] in the baricitinib plus remdesivir plus placebo group and 87·6% [84·2 to 90·3] in the dexamethasone plus remdesivir plus placebo group; risk difference 0·6 [95% CI -3·6 to 4·8]; p=0·91). The odds ratio for improved status in the dexamethasone plus remdesivir plus placebo group compared with the baricitinib plus remdesivir plus placebo group was 1·01 (95% CI 0·80 to 1·27). At least one adverse event occurred in 149 (30%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 179 (37%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·5% [1·6 to 13·3]; p=0·014). 21 (4%) of 503 patients in the baricitinib plus remdesivir plus placebo group had at least one treatment-related adverse event versus 49 (10%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 6·0% [2·8 to 9·3]; p=0·00041). Severe or life-threatening grade 3 or 4 adverse events occurred in 143 (28%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 174 (36%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·7% [1·8 to 13·4]; p=0·012). INTERPRETATION: In hospitalised patients with COVID-19 requiring supplemental oxygen by low-flow, high-flow, or non-invasive ventilation, baricitinib plus remdesivir and dexamethasone plus remdesivir resulted in similar mechanical ventilation-free survival by day 29, but dexamethasone was associated with significantly more adverse events, treatment-related adverse events, and severe or life-threatening adverse events. A more individually tailored choice of immunomodulation now appears possible, where side-effect profile, ease of administration, cost, and patient comorbidities can all be considered. FUNDING: National Institute of Allergy and Infectious Diseases.


Subject(s)
COVID-19 Drug Treatment , Adolescent , Adult , Azetidines , Dexamethasone , Double-Blind Method , Female , Humans , Male , Middle Aged , Oxygen , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides , Treatment Outcome
7.
Clin Infect Dis ; 74(12): 2209-2217, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1706701

ABSTRACT

BACKGROUND: The Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1 (ACTT-1) found that remdesivir therapy hastened recovery in patients hospitalized with COVID-19, but the pathway for this improvement was not explored. We investigated how the dynamics of clinical progression changed along 4 pathways: recovery, improvement in respiratory therapy requirement, deterioration in respiratory therapy requirement, and death. METHODS: We analyzed trajectories of daily ordinal severity scores reflecting oxygen requirements of 1051 patients hospitalized with COVID-19 who participated in ACTT-1. We developed competing risks models that estimate the effect of remdesivir therapy on cumulative incidence of clinical improvement and deterioration, and multistate models that utilize the entirety of each patient's clinical course to characterize the effect of remdesivir on progression along the 4 pathways above. RESULTS: Based on a competing risks analysis, remdesivir reduced clinical deterioration (hazard ratio [HR], 0.73; 95% confidence interval [CI]: .59-.91) and increased clinical improvement (HR, 1.22; 95% CI: 1.08, 1.39) relative to baseline. Our multistate models indicate that remdesivir inhibits worsening to ordinal scores of greater clinical severity among patients on room air or low-flow oxygen (HR, 0.74; 95% CI: .57-.94) and among patients receiving mechanical ventilation or high-flow oxygen/noninvasive positive-pressure ventilation (HR, 0.73; 95% CI: .53-1.00) at baseline. We also find that remdesivir reduces expected intensive care respiratory therapy utilization among patients not mechanically ventilated at baseline. CONCLUSIONS: Remdesivir speeds time to recovery by preventing worsening to clinical states that would extend the course of hospitalization and increase intensive respiratory support, thereby reducing the overall demand for hospital care.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , Critical Care , Humans , Oxygen , SARS-CoV-2
8.
Clin Infect Dis ; 74(3): 556, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1699698
9.
Clin Infect Dis ; 74(3): 387-394, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684535

ABSTRACT

BACKGROUND: Since the introduction of remdesivir and dexamethasone for severe COVID-19 treatment, few large multi-hospital-system US studies have described clinical characteristics and outcomes of minority COVID-19 patients who present to the emergency department (ED). METHODS: This cohort study from the Cerner Real World Database (87 US health systems) from 1 December 2019 to 30 September 2020 included PCR-confirmed COVID-19 patients who self-identified as non-Hispanic Black (Black), Hispanic White (Hispanic), or non-Hispanic White (White). The main outcome was hospitalization among ED patients. Secondary outcomes included mechanical ventilation, intensive care unit care, and in-hospital mortality. Descriptive statistics and Poisson regression compared sociodemographics, comorbidities, receipt of remdesivir or dexamethasone, and outcomes by racial/ethnic groups and geographic region. RESULTS: 94 683 COVID-19 patients presented to the ED. Blacks comprised 26.7% and Hispanics 33.6%. Nearly half (45.1%) of ED patients presented to hospitals in the South. 31.4% (n = 29 687) were hospitalized. Lower proportions of Blacks were prescribed dexamethasone (29.4%; n = 7426) compared with Hispanics (40.9%; n = 13 021) and Whites (37.5%; n = 14 088). Hospitalization risks, compared with Whites, were similar in Blacks (RR: .94; 95% CI: .82-1.08; P = .4) and Hispanics (.99; .81-1.21; P = .91), but risk of in-hospital mortality was higher in Blacks (1.18; 1.06-1.31; P = .002) and Hispanics (1.28; 1.13-1.44; P < .001). CONCLUSIONS: Minority patients were overrepresented among COVID-19 ED patients, and while their risks of hospitalization were similar to Whites, in-hospital mortality risk was higher. Interventions targeting upstream social determinants of health are needed to reduce racial/ethnic disparities in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Cohort Studies , Emergency Service, Hospital , Humans , SARS-CoV-2
10.
Lancet Respir Med ; 9(12): 1365-1376, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472211

ABSTRACT

BACKGROUND: Functional impairment of interferon, a natural antiviral component of the immune system, is associated with the pathogenesis and severity of COVID-19. We aimed to compare the efficacy of interferon beta-1a in combination with remdesivir compared with remdesivir alone in hospitalised patients with COVID-19. METHODS: We did a double-blind, randomised, placebo-controlled trial at 63 hospitals across five countries (Japan, Mexico, Singapore, South Korea, and the USA). Eligible patients were hospitalised adults (aged ≥18 years) with SARS-CoV-2 infection, as confirmed by a positive RT-PCR test, and who met one of the following criteria suggestive of lower respiratory tract infection: the presence of radiographic infiltrates on imaging, a peripheral oxygen saturation on room air of 94% or less, or requiring supplemental oxygen. Patients were excluded if they had either an alanine aminotransferase or an aspartate aminotransferase concentration more than five times the upper limit of normal; had impaired renal function; were allergic to the study product; were pregnant or breast feeding; were already on mechanical ventilation; or were anticipating discharge from the hospital or transfer to another hospital within 72 h of enrolment. Patients were randomly assigned (1:1) to receive intravenous remdesivir as a 200 mg loading dose on day 1 followed by a 100 mg maintenance dose administered daily for up to 9 days and up to four doses of either 44 µg interferon beta-1a (interferon beta-1a group plus remdesivir group) or placebo (placebo plus remdesivir group) administered subcutaneously every other day. Randomisation was stratified by study site and disease severity at enrolment. Patients, investigators, and site staff were masked to interferon beta-1a and placebo treatment; remdesivir treatment was given to all patients without masking. The primary outcome was time to recovery, defined as the first day that a patient attained a category 1, 2, or 3 score on the eight-category ordinal scale within 28 days, assessed in the modified intention-to-treat population, defined as all randomised patients who were classified according to actual clinical severity. Safety was assessed in the as-treated population, defined as all patients who received at least one dose of the assigned treatment. This trial is registered with ClinicalTrials.gov, NCT04492475. FINDINGS: Between Aug 5, 2020, and Nov 11, 2020, 969 patients were enrolled and randomly assigned to the interferon beta-1a plus remdesivir group (n=487) or to the placebo plus remdesivir group (n=482). The mean duration of symptoms before enrolment was 8·7 days (SD 4·4) in the interferon beta-1a plus remdesivir group and 8·5 days (SD 4·3) days in the placebo plus remdesivir group. Patients in both groups had a time to recovery of 5 days (95% CI not estimable) (rate ratio of interferon beta-1a plus remdesivir group vs placebo plus remdesivir 0·99 [95% CI 0·87-1·13]; p=0·88). The Kaplan-Meier estimate of mortality at 28 days was 5% (95% CI 3-7%) in the interferon beta-1a plus remdesivir group and 3% (2-6%) in the placebo plus remdesivir group (hazard ratio 1·33 [95% CI 0·69-2·55]; p=0·39). Patients who did not require high-flow oxygen at baseline were more likely to have at least one related adverse event in the interferon beta-1a plus remdesivir group (33 [7%] of 442 patients) than in the placebo plus remdesivir group (15 [3%] of 435). In patients who required high-flow oxygen at baseline, 24 (69%) of 35 had an adverse event and 21 (60%) had a serious adverse event in the interferon beta-1a plus remdesivir group compared with 13 (39%) of 33 who had an adverse event and eight (24%) who had a serious adverse event in the placebo plus remdesivir group. INTERPRETATION: Interferon beta-1a plus remdesivir was not superior to remdesivir alone in hospitalised patients with COVID-19 pneumonia. Patients who required high-flow oxygen at baseline had worse outcomes after treatment with interferon beta-1a compared with those given placebo. FUNDING: The National Institute of Allergy and Infectious Diseases (USA).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Interferon beta-1a/therapeutic use , Adenosine Monophosphate/therapeutic use , Adult , Aged , Alanine/therapeutic use , Double-Blind Method , Female , Humans , Japan , Male , Mexico , Middle Aged , Oxygen , Oxygen Saturation , Republic of Korea , SARS-CoV-2 , Singapore , Treatment Outcome , United States
11.
Cell Rep Med ; 2(7): 100354, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1294297

ABSTRACT

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to 8 months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19/immunology , Immunologic Memory , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Memory B Cells , Memory T Cells , Middle Aged , Young Adult
12.
N Engl J Med ; 384(9): 795-807, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-972740

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (Covid-19) is associated with dysregulated inflammation. The effects of combination treatment with baricitinib, a Janus kinase inhibitor, plus remdesivir are not known. METHODS: We conducted a double-blind, randomized, placebo-controlled trial evaluating baricitinib plus remdesivir in hospitalized adults with Covid-19. All the patients received remdesivir (≤10 days) and either baricitinib (≤14 days) or placebo (control). The primary outcome was the time to recovery. The key secondary outcome was clinical status at day 15. RESULTS: A total of 1033 patients underwent randomization (with 515 assigned to combination treatment and 518 to control). Patients receiving baricitinib had a median time to recovery of 7 days (95% confidence interval [CI], 6 to 8), as compared with 8 days (95% CI, 7 to 9) with control (rate ratio for recovery, 1.16; 95% CI, 1.01 to 1.32; P = 0.03), and a 30% higher odds of improvement in clinical status at day 15 (odds ratio, 1.3; 95% CI, 1.0 to 1.6). Patients receiving high-flow oxygen or noninvasive ventilation at enrollment had a time to recovery of 10 days with combination treatment and 18 days with control (rate ratio for recovery, 1.51; 95% CI, 1.10 to 2.08). The 28-day mortality was 5.1% in the combination group and 7.8% in the control group (hazard ratio for death, 0.65; 95% CI, 0.39 to 1.09). Serious adverse events were less frequent in the combination group than in the control group (16.0% vs. 21.0%; difference, -5.0 percentage points; 95% CI, -9.8 to -0.3; P = 0.03), as were new infections (5.9% vs. 11.2%; difference, -5.3 percentage points; 95% CI, -8.7 to -1.9; P = 0.003). CONCLUSIONS: Baricitinib plus remdesivir was superior to remdesivir alone in reducing recovery time and accelerating improvement in clinical status among patients with Covid-19, notably among those receiving high-flow oxygen or noninvasive ventilation. The combination was associated with fewer serious adverse events. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04401579.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Azetidines/therapeutic use , COVID-19 Drug Treatment , Purines/therapeutic use , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Adult , Aged , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/adverse effects , Azetidines/adverse effects , COVID-19/mortality , COVID-19/therapy , Double-Blind Method , Drug Therapy, Combination , Female , Hospital Mortality , Hospitalization , Humans , Janus Kinase Inhibitors/adverse effects , Janus Kinase Inhibitors/therapeutic use , Male , Middle Aged , Oxygen Inhalation Therapy , Purines/adverse effects , Pyrazoles/adverse effects , Respiration, Artificial , Sulfonamides/adverse effects , Treatment Outcome
13.
Am J Infect Control ; 48(12): 1540-1542, 2020 12.
Article in English | MEDLINE | ID: covidwho-693247

ABSTRACT

Bioaerosol samples were collected in an airborne infection isolation room, bathroom, and anteroom of a ventilated patient with coronavirus disease 2019. Twenty-eight samples were negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid, possibly due to the patient being on a closed-circuit ventilator or the efficiency of the air exchanges in the room.


Subject(s)
COVID-19/transmission , RNA, Viral/analysis , SARS-CoV-2 , Ventilators, Mechanical/virology , Aerosols , Air Microbiology , COVID-19/virology , Humans , Patient Positioning , Patients' Rooms , Prone Position , Respiration, Artificial
14.
Cell Rep Med ; 1(3): 100040, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-549041

ABSTRACT

SARS-CoV-2, the virus responsible for COVID-19, is causing a devastating worldwide pandemic, and there is a pressing need to understand the development, specificity, and neutralizing potency of humoral immune responses during acute infection. We report a cross-sectional study of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in a cohort of 44 hospitalized COVID-19 patients. RBD-specific IgG responses are detectable in all patients 6 days after PCR confirmation. Isotype switching to IgG occurs rapidly, primarily to IgG1 and IgG3. Using a clinical SARS-CoV-2 isolate, neutralizing antibody titers are detectable in all patients by 6 days after PCR confirmation and correlate with RBD-specific binding IgG titers. The RBD-specific binding data were further validated in a clinical setting with 231 PCR-confirmed COVID-19 patient samples. These findings have implications for understanding protective immunity against SARS-CoV-2, therapeutic use of immune plasma, and development of much-needed vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL